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Abstract

Event sequences with marker and timing information are available in a wide range of domains, from machine log in
automatic train supervision systems to information cascades in social networks. Given the historical event sequences,
predicting what event will happen next and when it will happen can benefit many useful applications, such as maintenance
service schedule for mass rapid transit trains and product advertising in social networks. Temporal point process (TPP) is
one effective solution to solve the next event prediction problem due to its capability of capturing the temporal dependence
among events. The recent recurrent temporal point process (RTPP) methods exploited recurrent neural network (RNN) to
get rid of the parametric form assumption in the density functions of TPP. However, most existing RTPP methods focus
only on the temporal dependence among events. In this work, we design a novel multi-relation structure RNN model with
a hierarchical attention mechanism to capture not only the conventional temporal dependencies but also the explicit multi-
relation topology dependencies. We then propose an RTPP algorithm whose density function conditioned on the event
sequence embedding learned from our RNN model for cognitively predict the next event marker and time. The experiments
show that our proposed MRS-RMTPP outperforms the state-of-the-art baselines in terms of both event marker prediction and
event time prediction on three real-world datasets. The capability of capturing both ontology relation structure and temporal
structure in the event sequences is of great importance for the next event marker and time prediction.
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Introduction diffuses a post. Given the event sequences in the past, one

important problem is to predict what event will happen next

Event sequence with marker and time information is becom-
ing increasingly available in a broad range of domains,
such as machine logs in automatic train supervision (ATS)
systems [1], intelligent transport [2], financial time series
[3], and information diffusion in social networks [4]. Each
event sequence contains a list of information about the event
marker (e.g., type, participator) ordered by event time (i.e.,
when the event occurs). Figure 1 shows an example event
sequence, where (e;, t;) is an event marker—time pair. The
event marker e; has different meanings in different sce-
narios. For instance, in ATS system, e; represents a train
alarm/error (e.g., door signal not responding). But in social
information cascades, e; corresponds to a social user who
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and when it will happen. It can benefit a lot of applications in
various domains. For example, predicting when a mass rapid
transit (MRT) train will break down and what type of error
causes the breakdown can facilitate the MRT maintenance
service and help provide a more smooth travel experience
to passengers. Also, predicting who will be the next user to
diffuse a message and when the diffusion will happen can
be useful for product advertising, news spreading, etc.

The next event marker and time prediction is not a
trivial task. It is not easy to approximate the unknown
model which governs the event occurrences in the historical
event sequence. Temporal point process (TPP) [S5] is one
effective solution due to its capability of capturing the
temporal dependencies among events. The early attempts
usually made a hypothesis of the rules that govern the
generative process of events. Based on their hypothesis, a
conditional density function with a specific parametric form
was designed to approximate the probability when the next
event will happen. Representative studies include Poisson
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Fig.1 An example of marked temporal event sequence

process [6], Hawkes process [7], self-correcting process [8],
autoregressive conditional duration process [9], and so on.
Recently, some researchers observed that the perfor-
mance of the above TPP methods highly depends on
whether their hypothesis reflects the reality, which usually
requires strong prior knowledge of the event sequences. To
address this limitation, they start to explore recurrent neural
network (RNN) [10] in their recurrent temporal point pro-
cess (RTPP) models [11-13]. Specifically, they use an RNN
model to embed the event sequence with both markers and
time information, and then condition their density functions
on the learned event sequence embedding. By utilizing RNN
to learn the temporal dependence in event sequences, RTPP
models get rid of specific assumptions about the parametric
form. Moreover, they are non-Markovian processes assum-
ing the probability of a future event not only depends on

Fig.2 Illustrative example of
modeling different dependencies
in recurrent temporal point

the present event, but also the prior events. Although effec-
tive, most RTPP methods focus on the sequential temporal
dependence among events only. Specifically, the embedding
of an event depends only on the event that happened just
before it. As in Fig. 2a, h; depends on its immediate pre-
decessor h;_1 and the current status (e;, t;). There are two
major limitations.

Firstly, they overlook the implicit cross-dependence in
event sequences. The cross-dependence was first mentioned
by CYAN-RNN [13]. Notice that an event may be triggered
by its non-immediate predecessor in the event chain,
CYAN-RNN proposes an attention mechanism to capture
such cross-dependence in event sequences. The attention
mechanisms are widely used in recent deep learning models
to automatically capture elements’ importance [14]. For
example, in Fig. 2b, h5 depends on the weighted aggregation
of previous hidden states (hy, ko, h3, and hg). If es5 is
triggered mainly by e3 (rather than e4), the learned attention
weight a3 will be larger than a4 to emphasize the impact
from e3. However, CYAN-RNN considers all the historical
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events when modeling each event. This may lead to high
computation cost, especially for long sequences. Moreover,
extensively modeling all the previous events may also
introduce redundancy and noises. Ma et al. [15] proposed
a two-step attention mechanism to capture both the target
and sentence level attention for sentiment analysis; still, all
words in the sentence are considered in their model.

Secondly, temporal dependence—based RTPP models
neglect the possible explicit ontology dependencies in the
event sequences. Sometimes, the explicit ontology depen-
dencies may exist among the events. Take ATS log as an
example, events (i.e., system alarms) naturally form a tree
ontology. Figure 3 shows a toy example. These explicit
dependencies not only provide additional domain knowl-
edge about the event sequences, but also help remove the
unnecessary implicit dependency modeling in an RTPP
model like CYAN-RNN, e.g., “train broadcast error”” should
not be considered when modeling “point machine error”
because their dependencies are very weak as indicated by
the ontology dependency structure. In Fig. 2c, hs now
depends on the aggregation of {hi, hy, h3} but not hy
because e4 and es do not have direct explicit dependence.
There exist some models (e.g., Topo-LSTM [4]) which uti-
lize explicit dependence for event prediction. However, they
do not employ a TPP framework and thus cannot predict the
next event time. Moreover, they only model dependencies
with one single relation type. But in reality, the relations can
be of multiple types, e.g., the relations of event dependen-
cies in ATS log can be parent (e.g., train broadcast in Fig. 3),
or child (e.g., front sensor-train), sibling (front sensor-
emergency brake). To the best of our knowledge, none of the
existing RTPP models has studied the problem of modeling
event sequence with explicit ontology dependencies, not to
mention the settings with multi-relation dependencies.

In view of the limitations in existing studies, we design
a novel multi-relation structure RNN with a hierarchical
attention mechanism to embed the historical event sequence
with explicit ontology dependencies. We then propose
a multi-relation structure RNN-based recurrent marked
temporal point process model (MRS-RMTPP) which
conditions its density function on the learned event sequence
embedding to predict the next event marker and time. As
illustrated in Fig. 2d, to predict (e7, t7), we learn a hidden
state at every time stamp. For each event, we leverage
the embedding from all “relevant” events which happened

Fig.3 An example of ontology
dependency structure in ATS log

before it. We consider both temporal dependence (hy — hs)
and ontology dependencies with multiple types of relations
(parent: hy — hs,ho — hs, sibling : h3 — hs). Note
that the impacts of parent events and sibling events may
be different. And even for e; and e; that are both parent
events, they may have different degrees of influence on the
occurrence of es. Inspired by this, we design a hierarchical
attention mechanism to automatically learn the impact of
different relations (e.g., &, &, and @; for relation parent,
sibling, and temporal predecessor in Fig. 2d), as well as
the impacts of different events within one relation (e.g.,
a1 and oy for relation parent in Fig. 2d). The advantages
of our MRS-RMTPP are two-fold. Firstly, our model
utilizes the explicit ontology dependencies to capture
relations among historical events. It is more expressive
compared with the temporal dependence—based RTPP and
more efficient compared with the implicit dependence—
based RTPP. Secondly, our model exploits different types
of relations in the ontology dependencies. The proposed
hierarchical attention mechanism can effectively capture
impacts at different levels (i.e., from different relations and
from different events within one relation).
We summarize our major contributions as follows.

—  We design a novel multi-relation structure RNN, which
embeds event sequences with an event marker, event
time, and the explicit ontology dependencies among
events.

— We propose a hierarchical attention mechanism to
distinguish the impacts of the historical events within
each relation and the impacts of different relations.

— We propose an MRS-RMTPP model with its density
function conditioned on our designed multi-relation
structure RNN for the next event marker and time
prediction.

—  Our evaluation results show that our model outperforms
the contemporary baselines by 3.8 to 24.4% (event
marker prediction) and 1.9 to 38.6% (event time
prediction) on three real-world datasets.

Related Work

Before we introduce our method, we first review the
representative studies in two relevant fields: structure RNN
and temporal point process.
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Structure RNN

Recurrent neural network (RNN) [10] processes variable-
length sequences by having a recurrent hidden state whose
activation at each time is dependent on that of the previous
time [15]. Most RNN models (e.g., [16-19]) explore the
linear chain dependence in the sequence, i.e., the hidden
state at time #; depends on that at #;_; only. However, there
may exist topology dependencies in the input sequence.
For example, in a natural language sentence, words are
naturally combined to phrases [20-22]. In an information
diffusion cascade (a list of users who diffuse a specific
content ordered by their diffusion time), the friendship
relations among users form a network structure. Various
structure RNN have been proposed to exploit such ontology
dependencies in the sequences. The earliest attempt is Tree-
LSTM proposed in [20]. Tree-LSTM takes a parse tree
constructed from a natural language sentence as the input.
Each LSTM unit conditions its components on the sum of
child hidden states. The hidden state of the root node serves
as the sentence embedding. Recent structure RNN models
start to explore more complicated structures than a tree.
For example, DAG-RNN [23] embeds a directed acyclic
graph (DAG) structure for scene labeling. Topological
RNN [4] embeds the social network structure in a cascade
to predict future diffusion. ProxEmbed [24] learns the
representations of the paths between two distant nodes in
a heterogeneous graph to measure nodes’ proximity. SPE
[25] further improves ProxEmbed by using subgraphs to
augment the paths between two nodes and then learns
a subgraph-augmented path embedding for semantic user
search.

Summary Most existing structure RNN models focus on
one single relation type (e.g., spatial relationships in
DAG-RNN, friendship in topological RNN). Although
ProxEmbed and SPE work on heterogeneous graphs, their
structure embedding is derived by a pipeline approach
which first embeds each sequential path using RNN and
then aggregates all paths’ embedding as the structure
embedding. In contrast to them, our RNN model directly
embeds a multi-relation dependency structure. Moreover,
none of the existing structure RNN models contains time
information; hence, they cannot predict event time.

Temporal Point Process

Temporal point process (TPP) [26] is a principled frame-
work for modeling the temporal event series data [27].
One important component of a TPP model is to design
its conditional density function that captures the dynamics
of event generation. There are usually the following two
directions.

@ Springer

Conventional Temporal Point Process The conventional
TPP models usually assume a particularly specified
parametric form for their conditional intensity functions.
For example, as the simplest point process, the Poisson
process [6] assumes its intensity function to be independent
of the history data. Both the homogeneous Poisson process
(A(#) = Ao = 0) and its time-varying generalization
(A(t) = g(¢) = 0) share this assumption. Hawkes process
[7], on the other hand, assumes that the occurrence of
each historical event increases the intensity by a certain
amount. Its intensity function is defined as A(t) = yp +
a) . ,v(t 1), where yo > 0 is a background intensity
independent of the history and y (z, #;) is a triggering kernel
capturing temporal dependencies. In contrast to Hawkes
process, the self-correcting process [8] assumes that the
occurrence probability of new events decreases if an event
has occurred recently. The intensity function is defined as
A(t) = exp(ut — Zti<,a), where u > 0, @ > 0. That is,
the intensity is decreased by multiplying a constant e™* < 1
every time a new event happens. Autoregressive conditional
duration process [9] tries to capture the dependency between
inter-event durations. Its intensity function is A() = ¢y éz)’
where ¢; = yo + ZT:O(X jd;—j captures the influences
from the most recent m duration, and N(¢) is the total
number of events up to time . One major limitation of
the above methods is that a fixed parametric form has to
be assumed in advance. However, such kind of hypothesis
of the underlying event dynamics model is hard to specify
or verify in practice. Thus, the expressive power of these
models may be restricted.

Recurrent Temporal Point Process Recently, a few attempts
have been made to design a more flexible model which can
be automatically adapted to the data. The intuition is to
use an RNN model to learn a more general and effective
representation of the underlying dynamics from the event
history automatically so as to get rid of the parametric
assumption. The first RTPP model, the RMTPP [11],
embeds both event time and marker using a standard RNN
model. Although effective, RMTPP has two limitations.
On one hand, RMTPP can only sample transient time
series features when an event happens. Intensity RNN
[12] then proposes to use a time series RNN to track
the spontaneous background and an event sequence RNN
to capture the long-range dependency with arbitrary time
intervals. On the other hand, RMTPP models temporal
dependencies only. With this observed, CYAN-RNN [13]
proposes an attention-based RNN to capture the cross-
dependence (implicit inferred dependencies) in the event
sequence. Unlike the other RTPP models, Mei and Eisner
[28] do not totally free the parametric assumption. They
propose a novel continuous-time LSTM which updates its
cell gate by a parametric form of a Hawkes process. In
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this way, they allow past events to influence the future in
complex and realistic ways.

Summary Most existing RTPP work ([11, 12, 28]) mod-
els events sequentially. Although CYAN-RNN [13] uses
an attention mechanism to capture the cross-dependence
in event sequences, they still extensively consider all the
previous events. Most of the existing RNN models with
attention mechanism follow this setting. For example, Song
et al. [29] use multi-head attention to capture the depen-
dencies restricted within a neighborhood in the clinical time
series. Ma et al. [30] introduces three attention mechanisms
to measure the relationships of different visits for diagnosis
prediction in healthcare. Considering all the previous nodes
in the sequence may lead to a high computation cost for
long sequences, as well as introduce some redundancies and
noises in the event embedding. In this work, we consider
the setting where an explicit ontology dependency structure
is available. We design a novel structure RNN model which
utilizes the explicit dependencies to remove unnecessary
dependencies modeling. Moreover, our model distinguishes
the impacts from different types of relations and within each
relation, so as to capture the dynamics of event generation
more accurately.

Methods

In this work, we study the problem of the next event
marker and time prediction. We first introduce some key
terminologies. Notations are listed in Table 1.

Table 1 Notations

Notation Description

(ej, t;) An event marker—time pair

S A sequence of event marker—time pairs

g Ontology structure G

(E,D,R,71) Events &£, dependencies D, relations types R,
Dependency-relation type mapping function t

H, A sequence of event marker—time pairs
up to time f;

Xi A dynamic feature extracted from event
marker e;

fi A time-dependent feature extracted from event
time ¢

n,n The dimensions of x; and f;

hi The embedding of event sequence

{Cer, 11), -, (ei i)}

a® The event attention for relation type R

a The relation attention

d,d Embedding dimensions and attention dimensions

Problem Formulation

Definition 1 An event sequence is an ordered sequence
of event marker—time pairs S = {(e1, 1), -, (en,tn)},
where (e;,t;) denotes an event with marker ¢; which
happened at time #; and #; < ;4.

Definition 2 A multi-relation ontology dependency struc-
ture is a directed heterogeneous graph G = (£, D, R, 1),
where £ is the events (nodes) set, and D is the dependencies
(edges) set. R ={Ry, -, Rk} is a set of distinct relation
types, and 7: D — R is a relation type mapping function.

If d;;; € D, there is a dependency from e; to e;. For
example, in Fig. 2d, we have D = {d15,d25,d35}, R =
{parent,sibling}. For dependency d; s, t(d1,5) = parent.

Problem 1 The input of our problem is a set of M training
event sequences {Sm}ﬁl"’:1 and a multi-relation ontology
dependencies structure G. Our problem output is a trained
model which is able to predict the next event marker-
time pair (yi+1, tj+1) given a sequence of the past events

{te1, 1), -+, (e, ti)}).

The event sequences and ontology dependency structure
may have different meanings in different application
scenarios. For example, in ATS, the event sequences
correspond to the ATS log streams where each event is an
error reported by the train system during its operation. The
event marker represents the type of error. The components
in the train system have different levels of granularity,
and hence form a tree-structure ontology which explains
their dependencies, e.g., the “train operation signal”
component has sub-components such as “braking signal”
and “engine signal.” Thus, there is a parent dependency
between event “train operation signal breakdown” and
event “braking signal breakdown.” In the social network
information diffusion scenario, event sequences correspond
to the cascades (i.e., sequences of re-sharing behaviors
ascendingly ordered by time). In this case, each event is
the action that a social user diffuses a piece of information
and the ontology dependencies are the friendship relations
among users. The event marker is the participator (i.e.,
social user) who performs the diffusion action.

Next, we will introduce how we design a model to predict
the marker and time for the next event and how we conduct
the end-to-end training.

Multi-relation Structure RNN
Denote the list of event marker—time pairs up to time

as H; = {(ej,tj)|t;j < t;}. The standard TPP specifies a
conditional density function p(e;, #;|H;) which describes

@ Springer
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the probability that the next event will happen at time #; with
marker ¢; as follows:

plertilHy) = f(eiHa) f (i1 He)
t
_ f(eimt,.)MmHn)exp(— / /\(rIHti)dr>
ti—
(1)

where f(e;|H;) is a probability function for the next
event marker, which follows a multinomial distribution.
f(ti|H;,) is the conditional density function which denotes
the likelihood that the next event will occur at time ¢;
given the timing sequence of the past events. A(¢|H,,) is the
conditional intensity function denoting the probability of the
next event happening within a small window [#;_1, ). Note
that event marker and event time are modeled independently
to reduce the computation complexity.

One key component in TPP is to design the conditional
density function f(¢|H;) (or the conditional intensity
function A(¢|H,)). Different formulas have been designed
as introduced in [27]. Motivated by previous recurrent
temporal point process studies (e.g., [11, 12]), we use an
RNN model to learn a general representation to approximate
the unknown model that governs the event occurrences in
the history sequences. The reason of adopting RNN is that
RNN has a feedback mechanism which creates an internal
state of the network to memorize the influence of each
past event [11]. For example, in Fig. 2a, the hidden state
at t5 not only depends on current input (es, t5), but also
depends on the hidden state from the immediate temporal
predecessor h4. Similarly, 44 depends on both (e4, #4) and
h3. Consequently, the hidden state at time ¢ embeds the
influence of the historical events up to time 7. Recall that
H,; = {(ej, tj)]t; < t;} denotes the list of event marker—
time pairs up to the time #. It is easy to derive that the
hidden state 4;_; in RNN corresponds to H;. Then, the
conditional density function f(#|H;) in Eq. 1 can be
naturally converted to

FWilHy) = filhi-1) @)

By embedding the historical event marker and time
information as a vector h;_j, we now are able to design
a more general conditional intensity function A(¢) without
having to specify a parametric form for the dependency
structure over the history. Our objective is then to design
an RNN model which is capable of modeling the event
sequences with both the temporal sequential dependencies
(e.g., ha — hs in Fig. 2d) and the multi-relation ontology
dependencies (h; — hs, ho — hs and h3 — hs in Fig. 2d).

Our intuition is that the probability of an event happening
increases if any of its related events have been observed
recently. The event relations are reflected in an ontology
dependency structure. Take ATS log and Fig. 3 as an

@ Springer

example, after a “front sensor signal error” event happened,
it is more likely to observe its sibling event “emergency
brake signal error” rather than an irrelevant event such as
“point machine signal error.” Moreover, different relations
may have different impacts on the next event. For instance,
for an observed event, its parent event has a higher
probability to be observed soon than its sibling event, e.g.,
a “sensor’” error does not necessarily lead to a “broadcast”
error. In an event for the same relation (e.g., sibling),
different events may have different impacts: “emergency
brake signal error” is more triggered by “front sensor signal
error” than “broadcast error.”

To properly model the multi-relation ontology in event
sequences, we propose a structure GRU model with a
two-layer attention mechanism. Our structure GRU is
able to (1) explicitly model the ontology dependencies
in event sequences for event sequence embedding; (2)
distinguish the impacts from different types of relations
in the dependencies; (3) differentiate the influences from
different events within each type of relation. Specifically,
we design a two-layer attention mechanism to leverage the
inferences from different relations more accurately. The first
attention layer is the event attention, which is constructed
above the hidden units within one type of relation so as to
differentiate the effects from different predecessors of the
same relation type. The second attention layer is the relation
attention, which is constructed above the aggregated hidden
state of different relations (i.e., the outputs of the first layer
attention) to differentiate the contributions of each relation
type.

Figure 4 shows an illustrative example of how our
proposed RNN model embeds the event sequence in Fig. 2d.
Specifically, for each event marker-time pair (e;, #;), we
learn a vector representation using a feature extraction
layer as x;, = W®e; + b©, where ¢; is a one-hot
vector representation of the event marker. In addition to
this dynamic embedding learned from our model, we also
extract a 134-d feature f; based on the timestamp of the
event (¢;). f; is a concatenate vector that indicates the
information of “month of the year,” “day of the month,”
“day of the week,” “hour of the day,” and “minute of the
hour” Both x; and f; are inputs into our multi-relation
structure RNN. Suppose R € R is a single relation type
as indicated by the ontology structure G, we use R(i) to
denote the set of events who have relation with ¢; and
happen before #;. That is, R(i) = {ej|t(d;;) = R,t; <
t;}. For example, in Fig. 2d, we have parent(es)={ey, e2},
sibling(es)={e3}. In reality, for ATS log, R = {parent, child,
sibling, self}. For social network cascades, R = {friend,
non-friend}. Note that in addition to the explicit ontology
dependence indicated by the ontology structure G, we also
consider the temporal dependence. For example, in Fig. 2d,
we have temporal(es) = eq4.
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Fig.4 Multi-relation structure
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Then for each single relation type R € R U {temporal},
we learn an update gate z;"’, reset gate r;* and candidate

activation le(R) as follows:

(P —oWOx + W fi + URE® 1 b, 3)
ri(R) =o(WWx; + W g+ Ur(R)h.ER) +br) “)
A% = anhW S xi + W £+ U B 0B 1 by)  (5)

where iifR) = ZejeR(i)a(R)hj is the aggregated hidden
state (i.e., embedding) of e;s predecessors who has relation
R with e;. The embedding vectors of predecessors in R (i)
are aggregated using the first layer attention weight o®.
o is a sigmoid function, and tanh is a hyperbolic tangent
function. o denotes the Hadamard product. W) e R4*",
W) e R @B ¢ Rixd and p € R are the model
parameters.

The attention vector a‘®) derived for each single type of
relation R is the event attention. It is used to distinguish the
influences from different events of the same relation type,
where each dimension is the attention weight for a specific
event in R(i). It is easy to derive that, for every single event
e;j € R(i), the dimensionality of aﬁR) equals to |R(i)].

Particularly, a'® is learnt as follows:

ﬁj(.’” = 7® . tanh(QPh; + bP) (6)

(*)
o ) o

J
ZUIGR(l)exp(ﬁ[ )

O,

G,

where n(R) € Rd/,
parameters.

The embedding for the event sequence {(ep, ?1), -,
(e;, t;)} is calculated as

hi= Y

ReRU{temporal}

CHly & ..

0P ¢ RY*d and p® e R are

ar {(a=2oh(®)+200h ] )

where a@g is the second layer attention vector used to
aggregate embedding from different types of relations.

Specifically, the relation attention & differentiates the
contributions from different types of relations. Each
dimension of @ is the attention weight for a specific relation
type R € R U {temporal}, and it is learned as

Bre =7 1anh(@ {{(1= 2o )20 0h ] +8) @)

AR = M (10)
> rerexp(B)

where the dimensionality of @ equals to |R|+1.7 € RIRITL
Q € RURIHDxd and p € RI®IHT are parameters.
Take Fig. 4 as an example, at timestamp 7s, the first layer

attention (event attention) vectors includes 2-d a(parem) nd

al-da “lbhng) pmnt) + Sp;.r ™ _ | and they are used to

dlstmgulsh the d1fferent impacts of e; and e,, which are both
the parents of current event es. Similarly, a(mbhng) learns
the impact of e3 being e5’s sibling and agtemporal) learns the
impact of es’s temporal predecessor event e4. As there is
just one sibling event and one temporal predecessor in the
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ibli t I -
example sequence, oe;fll ing) _ o{é elmpora) = 1 in Fig. 4.

The second layer attention (relation ﬁttention) is a 3-d vector
a. The three dimensions learn the impacts of three relation
types, including parent event (e, e2), sibling event (e3) and
temporal predecessor event (e4). Consequently, the hidden
state at f5 is learned as

hs = Gpar {((1 = 28) 0 Py 420 0 P
. { (- ngib)) o h‘ésib)} 4 ngib) o ﬁgsib)}
e {{(1 . Zgtem)) o ]'/l'gtem)} + Zgtem) o ljlgtem)}

where iiépar) = aé‘fr)hl + ag’;r)hL h'gSlb) = agfllb)h3 and
h'gtem) — agtelm)h4.

Note that sometimes multiple events may occur at the
same timestamp in real-world scenarios. To deal with the
possible co-occurrence of multiple events at one timestamp,
we take the following two measures. (1) We process each
event individually and only consider the related events hap-
pen before the current timestamp, i.e., at time #;, we only
consider {e;|t(d; ;) € R),t; < t;}; 2) We use a temporal
attention o (®™P°raD to capture the impacts of different tem-
poral predecessor events that happen one timestamp before.

In the end, the hidden state h; learned at time #; (8) is
the embedding of the historical event sequence until event
marker-time pair (e;, #;). The learned embedding can then
be fit into an RTPP model to predict the marker and time
of the next event (i.e., (ej+1, ti+1). Next, we introduce the
procedure of how to fit the event embedding into an RTPP
model for the next event marker and time prediction.

MRS-RMTPP

With the above multi-relation structure RNN model ready,
we now present our multi-relation structure RNN-based
recurrent marked temporal point process model (MRS-
RMTPP) for the next event marker and time prediction.

As shown in Eq. 1, to model the probability of observing
an event marker-time pair (e;, t;), we need to calculate
the probability of observing both a specific event marker
f(e;) and the conditional density function f(z;|H;,). Both
probabilities can be derived based on the embedding learned
from our structure RNN model.

For event marker modeling, we derive the multinomial
distribution of the next event makers by the below softmax
function:

exp ( > Vke(R)iiER) + b,{)
. . ReR
flei =kl{hj|ljeRE)})= P
3 exp ( > v RRE bi)

k=1 ReR
(11)
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where R € R U {temporal}. i\ = Zu,eR(i)“(R)hj is
the aggregated hidden state of e¢;’s predecessors who has
relation R with e; (same as in Eqs. 3-5). K is the number
of event markers. V¢®) ¢ RK*? j5 the maker related
parameter matrix for relation R and Vke(R) is the kth row of
vel®,

For event time modeling, we adopt the Gaussian function
as in [31]. The conditional density function of our MRS-
RMTPP model is calculated as

JlHy) = f@lthjlj € RO}

—(t — Z Vt(R)]',l'ER)_‘_bt)Z
ReR
202

)
12)

= exp(
V2mwo?

where i\ = Youserm@ O VIR e R s the time
parameter matrix for relation R. b’ € R! represents a back-
ground density score. Note that we consider different types
of dependencies in addition to the temporal predecessor
event. Hence, instead of conditioning the intensity function
on the single temporal predecessor event s;_1 as in exist-
ing RTPP work (e.g., [11, 12, 28]), our intensity function
is conditioned on a set of all related predecessor events
{hjlj € R@)}.

The prediction of the next event time is the expectation
of Eq. 12:

ti* _ Z Vt(R)h'l(R) +bt (13)
ReR

The above function leverages two influence factors to
compute the occurrence probability for next event, including
the past historical events and a background density score.
In particular, the first term Y p o VP embeds the
accumulative influence from the past related events with the
consideration of both their marker and time information.
The second term provides a background density value for
the next event appearing.

Note that another way for time modeling is to calculate
the density function as in [11]:

t
£ A(tmt,.)exp(— / x(rmt,.)dr)
ti—1

= exp { Z V(R)il'gR) +w'(t—ti_1)+ b
ReR

1 ..
e (X Vi )

ReR

1 R (R)

— 7 eXp <RZ v )hi +w (t—ti_1)+b
eR

(14)
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The prediction of the next event time is then estimated as

o
tf :/ t- f(t|H)dt (15)
fi-1
However, the experiment results (“Results on Next Event
Time Prediction”) show that adopting Gaussian function
as the density function (12) outperforms the method in
Eq. 14. One possible reason could be that the expectation
of a Gaussian function is easy to derive (as in Eq. 13),
while Eq. 15 does not have an analytic solution. In [11],
the authors calculate Eq. 15 by applying the numerical
integration techniques [32] for one-dimensional functions.
However, this may affect the accurate of the time prediction.

End-to-End Learning

Given a set of M training event sequences {(S',,l}nﬁ;’:1
where each sequence S = {(e1, 1), -, (en,tn)} is an
ordered list of event marker-time pairs, our model is trained
to maximize the below joint log-likelihood of observing
{Smin

mim=1*

L{SM_)) = log (H F(er, n)}iN:l))

= log (1’[1‘[ f(el-rrtz,-)f(rimz,-))

m

= ZZ(logf(eil{hjlj € R

+log f(:il{h;lj € RG))) (16)

where f(eil{hjlj € R()}) and f(#il{h;|j € R(@)}) are
formulated in Eqs. 11 and 12 respectively.

The model parameters are learned by maximizing the
above log-likelihood. We adopt back-propagation through
time (BPTT) [33] for training. At every iteration, for every
event marker-time pair (e;, t;), we first learn an event
marker embedding as x; = W©e¢; 4 b, which together
with a 134-d time feature f; extracted based on ¢;, are
input into our multi-relation structure GRU model. An event
sequence embedding /; is then generated at each timestamp,
which embeds the influence of the historical events up
to time #;. The learned h; is further used to model both
event marker modeling (11) and event time modeling (12)
in our MRS-RMTPP model. We apply stochastic gradient
descent (SGD) with mini-batch and the model parameters
are updated by Adam [34].

Results

In this section, we compare our proposed MRS-RMTPP
with the state-of-the-art baselines on two public real-world

social network datasets and one real-world ATS log dataset.
We design the evaluation experiments to (1) verify the
effectiveness of our proposed model in terms of both event
marker prediction and event time prediction, (2) validate the
importance of modeling ontology dependencies and implicit
cross dependencies in the event embedding, (3) verify the
effectiveness of our proposed multi-layer attention schema
for our multi-relation structure RNN.

Dataset

We evaluate our model on the following three datasets. The
statistics of the datasets are listed in Table 2.

e Twitter [36] contains the diffusion of URLs on Twit-
ter in 2010, as well as the follower relationships among
users. An event sequence is a diffusion cascade path for
a URL, where events are the users who diffuse the URL
ordered by time. Note that we did not use other tweet
features, e.g., text content, image, etc. The objective is
to predict who is the next user that will diffuse a URL
and when it will happen. The explicit ontology depen-
dency is given by the follower relationships among
users, and there are three types of relations: follower,
non-follower and temporal immediate predecessor.

e Memes [37] contain the diffusion of memes in April
2009 over online news websites. Similar to Twitter, an
event sequence is a diffusion cascade path. We follow
the settings in [4] to generate a link between two web-
sites if one website appears earlier than the other in
any cascade, and this serves as the explicit ontology
dependency. There are also three types of relations:
linked predecessor, non-linked predecessor and tempo-
ral immediate predecessor.

e SMRT is a set of ATS log data collected from the SMRT
corporation, which operates several Mass Rapid Transit
systems in Singapore. The dataset contains the ATS log
for 64 circle line trains from August 1st to September
15, 2016. We form the event logs for one train in one
day as an event sequence, and remove the sequence with
length equals one. Each event is an alarm/error reported
by the system during the train operation. The ontology

Table 2 Statistics of datasets

Twitter Memes SMRT
# event markers 944 3871 77
# relations 830 312,7237 2147
# rvent sequences 3335 161,544 15,812
# timestamps 3859 188,364 11,068
Avg. sequence length 8.91 8.35 17.7
# relation types 3 3 4
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Table 3 Comparison of all

methods Methods Temp. Onto. Implicit cross Multi-relation Time
depend. depend. depend. types modeling
RMTPP [35] . Eq. 14
Intensity RNN [31] . Eq. 12
CYAN-RNN [13] . . Eq. 14
Topo-LSTM [4] . °
Ours . . . . Eq. 12

structure is provided by SMRT, which indicates a tree-
like dependencies structure as illustrated in Fig. 3.
There are four types of relations: parent, sibling, self and
temporal immediate predecessor.

For all datasets, we sort all event sequences by the time
they happened, and then select the first 80% of event
sequences for training and last 20% of event sequences for
testing. This is to simulate the online processing in the real
world, when predictions are conducted based on the history
data observed so far. We further split the training sequences
and use the last 20% of the training sequences for validation.
For each validation and test event sequence {(ej, t1), - - - ,
(en, tn)}, the predictions are made for every (e;, t;) given
{(e1,t1),---,(ei_1,ti_1)} wherei =2,--- | N.

Baseline

We compared with the following four state-of-the-art
baselines. They are either the latest recurrent temporal point
process models: RMTPP, intensity RNN, CYAN-RNN; or
the representative RNN model that considers the explicit
ontology dependence: Topo-LSTM. We compare the factors
considered in all methods in Table 3.

e RMTPP [35] uses a recurrent neural network to model
the nonlinear dependency over both of the markers and
the timings from the historical events. Only temporal
dependency among events (i.e., the temporal immediate
predecessor of each event) is considered.

e Intensity RNN [31] separately models the background
time series pattern and the long-range dependency in
the historical events using two RNNs. Unlike RMTPP
which only sample transient time series features when
an event happens, intensity RNN captures both the
regularly updated features and the long-range dynamics
in asynchronous events. However, it also considers the
temporal dependency only.

e CYAN-RNN [13] adds an attention layer on top of
their RNN model to capture the cross-dependence in
cascade. But, they do not consider the explicit ontology
dependency.

e Topo-LSTM [4] uses diffusion topologies (an explicit
ontology dependence) to describe the cascade structure

@ Springer

and then models it as a dynamic DAG using their
proposed topological LSTM model. They do not model
the implicit cross-dependence, nor do they model the
event timing. Hence, they cannot predict the timestamp
for the next event.

Parameters and Environment

Follow the settings in [4], we set the learning rate as 0.001
and use Adam [34] to update model parameters. We set the
batch size as 256 and the number of epochs to a large value
and apply an early stopping mechanism which is triggered
when the model performance evaluated on the validation
data set is not further improved.

For all embedding dimensions, we tune the values in the
range of {32, 64, 128, 256, 512} using the validation data set
and choose the best parameters for all methods. Specifically,
the embedding dimension is d = 256 for Twitter and
memes and d = 64 for SMRT. The event marker feature
dimension is n = 256 for Twitter and memes and n = 64 for
SMRT. The time-dependent feature dimension is n’ = 134
(a concatenate vector indicates the information of “month of
the year,” “day of the month,” “day of the week,” “hour of
the day,” and “minute of the hour” as in [35]) for all the three
datasets. The attention dimension d’ = 128 for Twitter and
memes and d’ = 32 for SMRT. The dimension values are
usually larger in Twitter and memes because the number of
event markers in these two datasets is much larger than that
in SMRT (Table 2). We omit the parameters tuning result
figures due to the space limitation.

We run all experiments on a Linux server (Ubuntu
14.04.5 LTS with Intel(R) Xeon(R) CPU E5-2667 v3 @
3.20GHz*32, 128G memory, and NVIDIA Corporation
GK210GL [Tesla K80]). And we use Theano [38] and
python for the model implementation. Our code is available
online.!

Evaluation Metrics

We evaluate the performance in terms of both event
marker prediction and event time prediction. For the

Thttps://github.com/LaineyCai/MRSRMTPP
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evaluation of event marker prediction, we adopt mean
average precision (MAP)@K. At each timestamp ¢;, where
i =1,---,N — 1, we predict the next event (e;41, fi+1)
given {(e1, 1), - - - , (e;, t;)}. MAP is then calculated as the
mean of the average event marker prediction precision value
of each i for all test event sequences. Specifically,

0 AveP@K
MAP@K = Zm v; w (17

where Q is the total number of predictions made in the test.
K .. . .
AveP@K is defined as AveP@K = iz Precision(i) Xrel('),

numberofevents
where Precision(i) is the precision at the top i events in
the prediction. rel(i) equals to one if the ith event actually
happens in the next timestamp, zero otherwise. Depends
on the number of event markers in each dataset, we set
K = {20, 40, 60, 80, 100} in Twitter and memes and K =

{2,4,6,8, 10} in SMRT. The larger MAP is, the better.
In terms of the event time prediction evaluation, we use
root mean square error (RMSE) [39] between the estimated

time ¢ and the ground-truth #;. Formally,

Y26 —1)?
0

The smaller RMSE is, the better.

RMSE = (18)

Results on Next Event Marker Prediction

The comparison of our model and the baselines in terms of
next event marker prediction are illustrated in Fig. 5. From
the figure, we can see that, because we comprehensively
model different factors in event sequences, our proposed
model consistently outperforms the baselines across all
the three datasets. Specifically, on average, our model
improves the MAP of the baselines by 12.8% to 17.2%
relatively in Twitter, 7% to 23% relatively in memes, and
4.1% to 20.4% relatively in SMRT. The performance of
RMTPP is not satisfying, as it adopts the standard RNN

for event embedding, which does not model the explicit
ontology dependencies nor does it model the implicit
cross dependencies. Intensity RNN considers both the
background time pattern and the long-range dependencies,
hence the MAP is improved by 5.4% m and 11.8% (SMRT)
on average.

e  Validation of modeling implicit cross dependencies and
ontology dependencies: As shown in Fig. 5, compared
to intensity RNN, both CYAN-RNN and Topo-LSTM
derive a higher MAP, but due to different factors.
CYAN-RNN adds an attention layer on top of the
RNN model to capture the implicit cross-dependence
in the event sequences, which improves M AP of
intensity RNN by 0.9% to 9.2%. In contrast, Topo-
LSTM explicitly models the ontology dependence
among social network users for information cascade
embedding, deriving a 1.8% to 8.5% higher MAP.
This shows that both ontology dependence and implicit
cross dependency are important factors when modeling
the event sequences. And as shown in Fig. 5, the
implicit cross dependency is more important in Twitter
and memes (CYAN-RNN outperforms Topo-LSTM
by 0.9%), while the ontology dependence is more
important in SMRT (Topo-LSTM beats CYAN-RNN by
2.9%). The reason could be that the ontology structure
in the SMRT dataset is a more refined knowledge
of the relations among different components in the
system, which is strong auxiliary information to guide
the modeling of system alarms. On the contrary, the
social user following structure contains a lot of noises.
E.g., there are many artificial followers in social
networks. In such settings, the automatically learned
dependencies (i.e., implicit cross dependencies) are
more flexible and adaptive in event sequence modeling.
Finally, by comprehensively considering both ontology
dependencies and the implicit cross dependencies, our
model outperforms CYAN-RNN by 5.8% (SMRT) to
13% (Twitter) and Topo-LSTM by 3.8% (SMRT) to
14.3% (Twitter) relatively.

0.47 0.21
0.78
0.45 0.2
R 0.74 x/x"-)’,_(__—__x_x.___.
= 043 z z, —
= = 0.18 -/._’.——l——l s 07
0.41 017 0.66 /_,.___o—o
0.39 . 0.16 0.62
20 40 60 80 100 20 40 60 80 100 2 4 6 8 10
K K K
(a) Twitter (b) Memes (c) SMRT

——RMTPP -=-Intensity RNN

CYAN-RNN —=<Topo-LSTM

Ours

Fig.5 Results on next event marker prediction
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Table 4 Effect of different

relation types Relation type MAP@2 MAP@4 MAP@6 MAP@38 MAP@10
Temporal 0.7092 0.7268 0.7324 0.7346 0.7362
Temporal + parent 0.7389 0.7510 0.7555 0.7571 0.7585
Temporal + sibling 0.7327 0.7443 0.7483 0.7503 0.7525
Temporal + self 0.7350 0.7471 0.7517 0.7541 0.7554
Ours 0.7647 0.7781 0.7823 0.7846 0.7860

e  Validation of the proposed hierarchical Attention Mech-
anism: Topo-LSTM equally considers the influences
from all the related events indicated in the ontology
structure. However, not all these events are relevant to
the next event. And even if the next event is triggered
by several past events, their contributions to the occur-
rence of the next event are not necessarily the same. Our
hierarchical attention mechanism helps to automatically
learn the weights of past events from the historical data.
The inter-relation and intra-relation attention weights
capture the influences from different types and rela-
tions and within each type of relation respectively. As
shown in Fig. 5, with the help of our proposed hierar-
chical attention, our MRS-RMTPP consistently predicts
the next event marker more accurately compared to
Topo-LSTM. Specifically, the MAP@ K for next event
marker prediction is improved by 14.0% to 14.3% in
Twitter, 7.7% to 7.8% in memes, and 3.8% to 4.3% in
SMRT.

e Effect of different relation types: We further study the
effect of different relation types in SMRT to validate
the importance of distinguishing different types of
relations. As shown in Table 4, parent relation is more
important than sibling and self. This means that when
an event happens, it is more likely to see its parent
event happens next, rather than that of its sibling or
itself. This is understandable as a broadcast signal error
is more likely to trigger a broader/higher-level signal
(e.g., train signal) rather than other not-so-relevant error
(e.g., emergency brake error). Moreover, self seems to
be a more relevant relation type than sibling. This is
because an event in SMRT represents an error, and this
error may occur repeatedly until it is manually fixed.
Hence, the occurrence of an event is very likely to be
followed by itself in an event sequence. Table 4 shows
that in general, different types of relations have varying
degrees of influence to the next event. Using a layer
of attention to learn the impact weights from different
relation types helps to provide more intelligible results
to SMRT staff for maintenance service and analysis.
Finally, as shown in the last row, comprehensively
considering different relation types helps achieve a
MAP of 0.76 (MAP@2) to 0.79 (MAP@ 10) for the next
event marker prediction.

@ Springer

Results on Next Event Time Prediction

Figure 6 reports result on next event time prediction. As
introduced in “MRS-RMTPP” and Table 3, there are mainly
two ways to model event time. One is Eq. 12 adopted by
intensity RNN [31] and our model, and the other is Eq. 14
adopted by RMTPP [35] and CYAN-RNN [13]. Figure 6
shows that, in general, modeling time using Eq. 12 is better
than using Eq. 14. The reason could be that the expectation
of a Gaussian function is easy to derive (as in Eq. 13),
while Eq. 15 does not have an analytic solution. Du et al.
[35] and [13] use the numerical integration techniques to
approximate the expectation value, which may affect the
accuracy of time prediction.

More specifically, by modeling density function using
a Gaussian function, intensity RNN outperforms RMTPP
(by 11.1% to 30.9% relatively) and CYAN-RNN (by 0.72%
to 11.1% relatively) across all the three datasets in terms
of RMSE. Our proposed MRS-RMTPP further improves
the RMSE of intensity RNN by 8.3% on average. Note
that, both intensity RNN and our model adopt Eq. 12
as the event time density function. Because we compre-
hensively consider temporal, ontology and implicit cross
dependencies in the event sequence embedding, our learned
embedding can capture the dynamics from the history event
sequences more accurately. This leads to a more repre-
sentative event sequence embedding, and thus enables us
to make better time prediction for the next event. Simi-
lar trend can be found in the other pair of methods. i.e.,
RMTPP and CYAN-RNN both use Eq. 14 for time mod-
eling. However, the RMSE of CYAN-RNN is on average

25 d (hour)
) (day)
= 1.5
7
Z 1
(hour)
>
0
Twitter Memes SMRT
5 RMTPP ®Intensity RNN CYAN-RNN ® Ours

Fig.6 Results on next event time prediction



Cogn Comput (2020) 12:499-512

511

12.3% smaller than that of RMTPP, because CYAN-RNN
models the implicit cross event dependencies in addition to
the temporal dependencies considered by RMTPP.

Conclusions

In this work, we propose a novel recurrent marked temporal
process to model the event sequences with both ontology
relation structure and temporal structure. We design a
multi-relation structure RNN model to embed the dynamics
that govern the generation process of the events, and the
learned event sequence embedding is then used to model the
density function of the temporal point process. Due to its
capability of capturing the two structures in the history event
sequences, our proposed MRS-RMTPP outperforms the
state-of-the-art baselines by 3.8% to 24.4% (MAP@K) and
1.9% to 38.6% (RMSE) on two real-world social network
datasets and one real-world ATS log dataset.
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